Octameric mitochondrial creatine kinase induces and stabilizes contact sites between the inner and outer membrane.
نویسندگان
چکیده
We have investigated the role of the protein ubiquitous mitochondrial creatine kinase (uMtCK) in the formation and stabilization of inner and outer membrane contact sites. Using liver mitochondria isolated from transgenic mice, which, unlike control animals, express uMtCK in the liver, we found that the enzyme was associated with the mitochondrial membranes and, in addition, was located in membrane-coated matrix inclusions. In mitochondria isolated from uMtCK transgenic mice, the number of contact sites increased 3-fold compared with that observed in control mitochondria. Furthermore, uMtCK-containing mitochondria were more resistant to detergent-induced lysis than wild-type mitochondria. We conclude that octameric uMtCK induces the formation of mitochondrial contact sites, leading to membrane cross-linking and to an increased stability of the mitochondrial membrane architecture.
منابع مشابه
Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. Differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane.
Phosphate extraction of mitochondrial creatine kinase (Mi-CK, EC 2.7.3.2) from freshly isolated intact mitochondria of chicken cardiac muscle, after short swelling in hypotonic medium, yielded more than 90% of octameric and only small amounts of dimeric Mi-CK as judged by fast protein liquid chromatography-gel permeation analysis of the supernatants immediately after extraction of the enzyme. I...
متن کاملRole of Creatine Kinase – Hexokinase Complex in the Migration of Adenine Nucleotides in Mitochondrial Dysfunction
Creatine phosphokinase (CK) (ATP: creatine phosphotransferase, ЕС 2.7.3.2.) is found in a variety of cells with high and fluctuating energy requirements. It catalyses the reversible transfer of the high-energy-N-phosphoryl group from phosphocreatine to ADP. Creatine kinase connects sites of energy production with sites of energy consumption (Dolder et. al., 2001; Focant et al., 1970; Grossmann ...
متن کاملThe function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis.
The outer mitochondrial membrane pore (VDAC) changes its structure either voltage-dependently in artificial membranes or physiologically by interaction with the adenine nucleotide translocase (ANT) in the c-conformation. This interaction creates contact sites and leads in addition to a specific organisation of cytochrome c in the VDAC-ANT complexes. The VDAC structure that is specific for conta...
متن کاملNative mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localization, and structure-function relationships.
The mitochondrial isoform of creatine kinase (Mi-CK, EC 2.7.3.2) purified to homogeneity from chicken cardiac muscle by the mild and efficient technique described in this article was greater than or equal to 99.5% pure and consisted of greater than or equal to 95% of a distinct, octameric Mi-CK protein species, with a Mr of 364,000 +/- 30,000 and an apparent subunit Mr of 42,000. The remaining ...
متن کاملMitochondrial creatine kinase and mitochondrial outer membrane porin show a direct interaction that is modulated by calcium.
Mitochondrial creatine kinase (MtCK) co-localizes with mitochondrial porin (voltage-dependent anion channel) and adenine nucleotide translocator in mitochondrial contact sites. A specific, direct protein-protein interaction between MtCK and mitochondrial porin was demonstrated using surface plasmon resonance spectroscopy. This interaction was independent of the immobilized binding partner (pori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 385 Pt 2 شماره
صفحات -
تاریخ انتشار 2005